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Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice

János Török,1 Supriya Krishnamurthy,2,* János Kertész,1 and Ste´phane Roux3
1Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, 8 Budafoki u´t,

H-1111Budapest, Hungary
2Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

3Surface du Verre et Interfaces, UMR CNRS/Saint-Gobain, 39 Quai Lucien Lefranc, 93303 Aubervilliers Cedex, France
~Received 10 September 2002; published 10 February 2003!

Motivated by the large strain shear of loose granular materials, we introduced a model that consists of
consecutive optimization and restructuring steps leading to a self-organization of a density field. The extensive
connections to other models of statistical physics are discussed. We investigate our model on a hierarchical
lattice that allows an exact asymptotic renormalization treatment. A surprisingly close analogy is observed
between the simulation results on the regular and the hierarchical lattices. The dynamics is characterized by the
breakdown of ergodicity, by unusual system size effects in the development of the average density, as well as
by the age distribution, the latter showing multifractal properties.
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I. INTRODUCTION

Slow dynamics with no separation of time scales rep
sent a major challenge of statistical physics. Experime
and simulation approaches are extremely difficult, so in m
cases new ideas and models are needed for the understa
of this kind of problems.

There can be different roots of slow dynamics: syste
close to the critical point slow down enormously due to t
increasing characteristic time. Phase separation is often
companied by a slow coarsening process@1#. In glasses the
free energy landscape is so complicated and structured
the system never finds the global minimum and show
history dependent behavior called aging@2#. Slow dynamics
may also occur in intrinsically dynamic, driven systems lea
ing to scale free fractal structures. The name
self-organized criticality covers a whole family of relate
models@3#.

In this paper we study a model~introduced in Ref.@4#!,
where the system exhibits a very slow evolution with a te
dency of getting stuck in metastable states. However,
model is different from those studied earlier in the sense
there is an element of both energy as well as entropy bar
being present as a result of the rules of evolution. We
able to directly link the slow evolution to a breakdown
ergodicity in the dynamics. This then leads to several in
esting features of the model such as nontrivial system
effects, a multifractal ‘‘age’’ distribution, and a nontrivia
temporal evolution.

Motivated by our study of shearing loose granular ma
rials @4#, we report in this paper a mechanism leading to sl
dynamics. In granular materials displacement occurs in a
calized manner, in ‘‘shear bands’’ which are formed alo
the weakest parts of the samples. During shear, grains
rearrange themselves and occasionally strengthen the
structure. In such a case, the shear band finds a new con
ration that avoids this zone. Based on this picture we in
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duced a model where consecutive steps of optimiza
~finding the weakest part of the sample! and restructuring
~random rearrangement of grains! takes place. Assuming
translational invariance in the shear direction, the model
comes two dimensional. We have studied the model num
cally in detail on regular lattices@5#, however, it is difficult to
go beyond the simple description of numerical simulations
turned out to show unexpected properties including
tremely slow dynamics and unusual size dependence~break-
down of ergodicity!, and it provides interesting prediction
for the granular system.

The aim of this paper is to study this same model on
hierarchical diamond lattice both numerically and analy
cally, and to compare these results with the simulations
the Euclidean lattice. We find that despite the very differe
connectivities of these two lattices, the qualitative behav
is much the same; for some properties, there is a quantita
matching as well. The recursive nature of the hierarchi
lattice, however, aids the analytical treatment greatly, th
helping us in getting a deeper understanding of the probl

The paper is organized as follows: In the following se
tion we define the model in general and on the hierarch
lattice. In Sec. III, the relation of the model with other pro
lems of statistical physics is discussed. In Sec. IV, the
merical results are shown and compared with the reg
lattice simulations. In Sec. V we present the exact asympt
solution of the model. We conclude in Sec. VI. Appendixes
and B contain technical details of the calculations used
Sec. V.

II. THE MODEL AND THE HIERARCHICAL LATTICE

The model that we study in this paper is defined as f
lows: A two-dimensional field is characterized by a sing
scalar parameter, the density%(x,y). Initially this density is
generated randomly from the distributionpi(%). At every
step we search for theminimal pathP* that is defined as
follows. The minimal path is a continuous, directed pathP
that spans the system in thex direction and the sumS of the
local densities along it,
nta
©2003 The American Physical Society08-1
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TÖRÖK et al. PHYSICAL REVIEW E 67, 026108 ~2003!
S~P!5 (
(x,y)P P

%~x,y!, ~1!

is minimal among all possible paths. The minimal path is
pathP* for which S(P* ) is minimum.

Once the minimal path is found the density values of
points belonging to the minimal path (x,y)PP* are replaced
by new densities randomly picked from the distributi
pr(%).

The above process is repeated as long as desired. A s
time step consists of both searching for the minimal path
well as refreshing the local densities along it.

In the following we restrict ourselves to the case wherepi
and pr are uniform distributions in the interval@0:1#. Our
model is discretized on a lattice. In Ref.@5# we report on
detailed numerical results for various properties of the mo
on the Euclidean square lattice. The analytic treatment on
square lattice has not been possible so far. However, in
paper, we obtain exact asymptotic solutions for the mode
the hierarchical diamond lattice.

The hierarchical diamond lattice@7# is constructed as fol-
lows. We first consider a single bond connecting two poi
A andB. This constitutes the most elementary~generation 0!
lattice. The first generation lattice is obtained by substitut
the unique bond by an elementary ‘‘diamond’’ of four bond
i.e., two parallel connections each consisting of two bond
series@Fig. 1~b!#. The next generation is obtained recursive
by the substitution of each bond by a diamond@Fig. 1~c!#.
Repeating the above procedureN times, produces a
Nth-generation hierarchical lattice. This lattice has a dim
sion equal to 2, and hence can be compared with its Euc
ian counterpart.

All results are based on the exploitation of the recursiv
of the construction of the lattice. If one can compute t
properties of an elementary diamond and transform this
a single bond endowed with the same, a recursive use of
procedure clearly allows the reduction of the entire latt
back to a single bond thus determining the global behav
This is a real space renormalization procedure and the s
ture of the lattice makes such renormalization treatments
act. Hierarchical lattices have been widely used to study s
eral phenomena such as percolation@8#, spin models@9#,
sums of directed paths@10#, etc. However, usually there is
price to pay in that the result may differ from its Euclide
lattice counterpart. There is no general formalism by wh
means to estimate the validity of hierarchical lattice resu
for the Euclidean lattice. Therefore, it is necessary to re
to numerical results to assess the similarity between the
cases. It will be shown in the following that indeed the an

FIG. 1. The zeroth~a!, first ~b!, and second~c! generations of
the hierarchical lattice.
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ogy between the results obtained on both kinds of lattice
extremely close. Therefore, the analytical solution obtain
here provides a better understanding of the Euclidean la
case.

III. RELATION TO OTHER STATISTICAL PHYSICS
MODELS

Before reporting the result of numerical simulations
the hierarchical lattice, we point out some analogies that
be drawn between our model and other diverse problem
statistical physics.

The rule of our model, finding the extremal directed spa
ning path at every instant, is similar to finding the grou
state of a directed polymer in a random potential@11#. How-
ever, in our case this potential is uncorrelated only at
beginning; it changes in time through the process alre
described above, of ascribing new densities to all sites al
the minimal path. The shape of the path on Euclidean latti
is found to be self-affine in the directed polymer problem
The model studied here changes the underlying poten
landscape in a self-organized way and naturally induces
relations. These in turn change the self-affine exponent of
path. This feature is studied numerically in an earlier pa
@5#.

The rules of our model can be regarded as a genera
tion of the Bak-Sneppen model of evolution@12#, but in
higher dimensions. Indeed, the constraint of finding the m
mal path and then changing it, puts this model in a class
extremal models studied in contexts as different as interf
depinning @13# and flux creep@14#. However, there is an
important difference between our model and other extre
models. In the latter case, the system~usually one dimen-
sional! reaches a steady state that is ‘‘self-organized critica
in the sense that there is a power-law distribution for a
lanches in the steady state. In the case of our model,
steady state is reached and all quantities depend on time
we will see, we can define avalanches that are indeed po
law distributed, but always with time-dependent prefacto
The difference is best illustrated if we look at the simplest
these extremal models, the Bak-Sneppen model@12#. This
model is defined on a one-dimensional periodic array of r
dom numbers where at every update, the least and its ne
bors are refreshed from a given time independent probab
distribution. Our model is, however, related to a variant
this in which only the least is changed. In one dimensio
changing only the least does not lead to a very interes
behavior. However, in two dimensions, as we will se
changing only the minimal path leads to very nontrivial e
fects. Further, the simple minded variation of the origin
Bak-Sneppen model turns out to be very useful in solv
our model on the hierarchical lattice.

There are also connections between this model and
apparently unrelated problem of a random walk in a dis
dered potential. If we consider a one-dimensional cross s
tion of the model perpendicular to the minimal path, w
could imagine the point through which the interface pas
through, as the position of a random walker. The subsequ
dynamics can then be interpreted as that of a walker mov
8-2
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SLOW RELAXATION DUE TO OPTIMIZATION AND . . . PHYSICAL REVIEW E67, 026108 ~2003!
through an initially random potential, modifying it along th
way. While the actual dynamics of the interface in two d
mensions is quite complicated to translate in its entirety i
one dimension, it is possible to do so in the simplest c
when only corner flips are allowed for the interface. For t
walker, this simply translates to the condition that the sub
quent position of the walker is on one of the neighbori
sites of the present one, chosen by an inequality condit
The value at the site the walker has just left, is also chang
We have studied such an active walker model in detail@15#
and find that it leads to logarithmically slow dynamics.

Because of the extremal condition used in finding
minimal path at each time step, the solution of the model
the hierarchical lattice uses results from extreme-value
tistics @16#. We also find that the ‘‘age’’ distribution, i.e., th
probability distribution of the number of times up to timeT,
that a given site has been a part of the shear band~and has
hence been changed!, has many similarities with models o
fragmentation studied in various contexts@17#.

There has been recently an upsurge of interest in syst
exhibiting an anomalously slow relaxation. Such a behav
is generically reminiscent of a glassy behavior, and this a
ogy has motivated a number of studies@18#. Just to mention
one example related to granular media, the slow compac
of sand under repeated tapping@19,20# displays analogies
with glasses obtained at different cooling rates. A numbe
different modelings of this compaction process have b
proposed@6,18,21–32#. Some of these models emphasize t
role of a broad distribution of energy barriers that have to
overcome through thermal activation. This naturally leads
the occurrence of a wide distribution of characteristic tim
with a slower and slower dynamics as the easiest barriers
exhausted. Models of this sort have been looked at in a w
variety of contexts ranging from trap models@33# and
anomalous diffusion in the presence of quenched diso
@34# to constrained spin systems@35#, granular compaction
@6#, and aging in soft solids@36#. Other approaches put mor
emphasis on the collective nature of the necessary rearra
ment allowing for a relaxation@18,21–32#. As time passes
the relaxation has to become more and more coopera
and hence the barrier is more entropic than energetic. Mo
with entropic barriers have been well studied in other c
texts too, such as the backgammon model@37#.

In the model we study in this paper, as we shall see,
observe a very slow dynamics that can indeed be comp
with such glassy behavior. We do not include any tempe
turestricto sensu; however, the randomness of the local de
sities can in some way be compared with thermal noise.
crude classification we proposed above between energ
and entropic emphasis is not quite suited to our model, wh
both aspects are simultaneously present. The necessar
operative nature of efficient events is included in the sea
for a minimal path where all sites contribute with the sa
weight. However, alocal dense configuration can occur
any time, and remain quenched thereafter for very long. T
is like an energy barrier since in order for the minimal pa
to go through this region, all minimal paths with small
energies need to be eliminated. This is thus a very rare e
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with the probability becoming smaller and smaller as tim
passes.

To push forward the analogy with a glassy system,
will see that we observe a breakdown of ergodicity, in t
sense that the activity is not spread uniformly throughout
system. Hence if we partition a system into two subpa
~even for large sizes!, the relative ‘‘age’’ of the two sub-
systems will tend to a broad distribution, and not to a narr
one as expected for homogeneous systems. This implies
the scaling of the compaction in both space and time is
pected to be nontrivial.

IV. NUMERICAL RESULTS

In this section we present briefly the most important n
merical results on both the hierarchical and Euclidean
tices.

The most important quantity of the system is theaverage
density. We define it as the mean density of all sites n
belonging to the minimal path and we denote it by^%&(t).
The importance of not including the minimal path in th
average density is that this definition ensures that^%& mono-
tonically increases with time. Furthermore, as we will see
late times the minimal path mostly remains unchanged. Si
we keep refreshing the same bonds again and again, the
sity along the minimal path is simply taken from the know
distribution pr(%) and there is no need to incorporate th
into ^%&.

In our case, aspi5pr is a uniform distribution between 0
and 1, it is clear from the rules that the system evolv
towards the limiting state of%(x,y)51 everywhere. It is
natural thus to plot 12^%&(t), as done in Fig. 2.

In Fig. 2 we present both theL3L square~upper! and
hierarchical~lower! numerical results for̂ %&(t). We can
make two immediate observations. Thet/L (t/2N) scaling
works nicely up to about unity after which a system si
dependent relaxation is observed which is slower for lar
systems. The density decay seems to be slower than
power law. The other quantity that we study in detail is t
Hamming distance, i.e., the number of different bonds be
tween consecutive minimal paths. We denote this quantity
d. The value ofd may vary from 0 toL (2N).

As can be seen in Fig. 3, in both lattices, at an early st
the mean Hamming distance is close to the system size~i.e.,
two consecutive paths do not overlap at all!. It then decreases
monotonically to 0. We recall that when the distance is eq
to 0, then the two successive conformations of the minim
path are identical, in spite of the total renewal of rando
densities along them. This indicates that minimal paths h
a tendency to remain more and more persistent as the sy
‘‘ages.’’

V. ANALYTICAL RESULTS ON THE HIERARCHICAL
DIAMOND LATTICE

In the following we show how some of the above liste
properties of our model can be understood analytically on
hierarchical lattice. The techniques we use are essent
those of extreme value statistics.
8-3
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FIG. 2. The difference of the
average density from its
asymptotic value 1 as a functio
of time. The system sizes ar
L532,64,128,256,512 for the
square lattice~left! and N52 to
N57 for the hierarchical lattice
~right! from bottom to top, respec-
tively. The average was done ove
all the inactive sites in the lattice
and for an ensemble of 20 to 100
samples. System size increas
from bottom to top in both cases
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A. Summary of the solution

We use the hierarchical nature of the diamond lattice
calculate the average density for levelN, knowing the results
on levelN21.

Let us introduce the following notations. The avera
density of the inactive sites in a~sub!lattice level N is
% (N)(t), the density of the active sites isx(N)(t). In ~sub!lat-
tices we define the active site to be the minimal path of t
~sub!lattice, regardless of whether it is a part of the glob
minimal path or not. We will use the indicesl, r, u, andd for
left, right, up, and down, respectively, to indicate the parts
a diamond@~sub!lattice# corresponding to the illustration in
Figs. 1~b!, 1~c!.

A generationN lattice is constructed by putting togeth
four generationN21 sublattices~see Fig. 1! with two series
couplings and one parallel coupling. The series coupling
the sublattices is easily taken into account, both the den
of the minimal path as well as the density of the sites in
bulk are simply averaged:

x[S(N21)]~ t !5 1
2 @xl

(N21)~ t !1xr
(N21)~ t !#5x(N21)~ t !,

~2!

% [S(N21)]~ t !5 1
2 @% l

(N21)~ t !1% r
(N21)~ t !#5% (N21)~ t !,

where the superscriptS refers to two systems coupled i
series.
02610
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The next step is the coupling in parallel of two seri
couplets. The density of the shear band is simply the m
mum of that of the two subsystems. The average densit
the bulk contains two contributions: the average densities
the subsystems as well as the average density of one o
active paths~the one which is the larger of the two conten
ers for the global minimal path!:

x(N)~ t !5min$xu
S(N21)~ tu!,xd

S(N21)~ td!%,
~3!

% (N)~ t !5
~4N22N11!

2~4N22N!
$%u

S(N21)~ tu!1%d
S(N21)~ td!%

1
2N

~4N22N!
max$xu

S(N21)~ tu!,xd
S(N21)~ td!%,

where 4N is the total number of bonds, 2N is the number of
the bonds in a path on a generationN lattice, and the multi-
plicative factors in the above equation are the appropr
fractions of bonds at generationsN ~see Fig. 1!.

There is a further subtlety here. The timet counts the total
number of updates at generationN. However, the ‘‘time’’
relevant for a subsystem at generationN21 is simply the
number of times the subsystem itself has been updated. S
only one of the two systems in parallel is updated at ev
instant, the ‘‘age’’ of a subsystem at levelN21 is less thant
and is denoted bytu andtd in the above equation. In Appen
re

s
.

-

i-

r

FIG. 3. The average Hamming
distance versus time for the squa
lattice ~left! and hierarchical lat-
tice ~right!. The same system size
were scaled together as in Fig. 2
In both figures, the analytical pre
diction 1/(t11) is plotted over
the data. Note that scaling with
system size is excellent for the h
erarchical lattice while it seems to
display systematic corrections fo
the Euclidean case.
8-4
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SLOW RELAXATION DUE TO OPTIMIZATION AND . . . PHYSICAL REVIEW E67, 026108 ~2003!
dix A we prove that the relative age of either subsystemtu /t
or td /t is uniformly distributed between 0 and 1 in the lim
of a large timet. Thus we rewrite the second equation of E
~3!,

% (N)~ t !5
~4N22N11!

~4N22N!

1

t E0

t

% (N21)~ t8!dt81
2N

~4N22N!

1

t

3E
0

t

max@x(N21)~ t8!,x(N21)~ t2t8!#dt8. ~4!

The second term in Eq.~4! comes from the competition be
tween the minimal paths in the two subsystems coupled
parallel. Only one of these is the global minimum and t
larger has hence to be incorporated into the density of
system. At every time step that a subsystem is updated
minimal path of that subsystem can switch to either si
Since the two parallel subsystems are entirely disjunct,
path changes sides if the mean of the random numbers
erated along the minimal path is larger than the minimal p
in the other subsystem. This competition is present at
levels of the hierarchy.

The problem of the minimal path in the parallel couplin
can be thus described by a simple model that we call
two-site model. The two-site model is defined as follow
There are two sites, each with a single value generated
random number drawn from a given distributionp(x) ~in our
case at levelN it is the sum of 2N independent random num
bers, each of which is taken from the uniform distributi
between 0 and 1). We choose the site with the smaller va
and refresh it with a random number generated from
same distribution@38#. The dynamics consists of repeatin
this procedure. Important features of this problem turn
not to depend on the distributionp(x), since the entire evo
lution is only based on the ordering of the values. As a res
one can map any bounded distribution onto a uniform o
and preserve the same history of the activity. It is thus e
to deduce that the probability of having an active site in o
subsystem for a given time, knowing the age of the syst
is independent ofp. We present in Appendix B an analytica
derivation of relevant properties of this problem.

B. Age distribution

We have seen that as a result of the parallel coupling,
time spent in one subsystem, or the ‘‘age’’ of a subsystemu,
differs from the actual timet and thatu/t is uniformly dis-
tributed between 0 and 1 in the two-site model. Repea
the above argument from the entire system down to a sin
bond, we can extract the statistical distribution of ages re
tive to the total time.

Let pN(T;t) be the statistical distribution that a give
bond was updatedexactly T times at timet in a lattice of
generationN. Using the above argument, we can relate th
distributions of different generations through the relation

pN11~T;t !5E
T

t pN~ t8;t !

t8
dt8 , ~5!
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with p0(T;t)5d(t2T) andN>1. In other words, the age o
the bonds or subsystems can be obtained by a ‘‘fragme
tion’’ process. At every level to get the age of the upper a
lower arms in the parallel coupling the age of the diamond
cut into two pieces with a uniform distribution. Not surpri
ingly, equations similar to the above are well known in t
context of models of fragmentation@17#.

The solution of the above recursion is

pN~T;t !5
1

t

@ ln~ t/T!#N21

~N21!!
~6!

for T<t. Introducing the relative ageu5T/t, we observe
that the above distribution becomes independent of the t
t ~the 1/t prefactor is absorbed in the measuredu5dT/t).

We note here that models of fragmentation which are
scribed by similar equations usually look for a steady st
solution, i.e., anN independent solution at late times. How
ever, in our case, as explained below, theN dependence is
crucial and has necessarily to be kept. Further, the orde
which N andt are taken to infinity is very important as wel

It is interesting to note that the above distribution can
simply expressed in the framework of multifractality, whic
was introduced to characterize the scale dependence of
tistical distributions. This analysis naturally provides a ge
eralized ‘‘dimensional analysis’’ of a local quantityx, with a
distribution pL(x). We introduce the scaling indexa and
associated fractal dimensionf (a) of the support of the set o
x values defined through

x}La,
~7!

xpL~x!}L f (a)2d,

where d is the space dimension. Alternatively,a
5 ln(x)/ln(L) and f (a)5d1 ln@xpL(x)#/ln(L). In our case, the
local quantityx is the relative ageu5T/t andd52, thus

a5
ln~u!

ln~L !
,

f ~a!521a1S 1

ln~2!
2

1

ln~L ! D H ln~2a!111 ln@ ln~2!#

2
ln@ ln~L/2!#

ln~L ! J , ~8!

where we have used the Stirling formula, assuming 2N5L
@1. In this limit, we have

f ~a!5a1
ln~2a!

ln~2!
1

112 ln~2!1 ln@ ln~2!#

ln~2!
1OS 1

ln~L ! D ,

~9!

where in the limit of an infinite system size,L→`, the cor-
rection termO@1/ln(L)# vanishes. Due to this formalism w
arrive at asystem size independent description of the dis
bution of relative age, although the distribution itself de
pends onL. Moreover, the interpretation of the formalism
8-5
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rather natural. The subset of sites whose age scales
power law of the system sizeu}La has a fractal dimension
f (a).

Figure 4 shows the asymptotic form of the multifrac
spectrum. The range ofa values corresponding to a positiv
fractal dimension isamin'25.33 andamax'20.15. The
scaling exponent characterizing the maximum number
sitesa0 is the one for whichf is maximum, i.e.,f 52, and
hencea0521/ln(2)'21.44. Let us emphasize that this d
scription is only valid for very large times. Otherwise, th
finite cutoff in the time distribution will affect the multifrac
tal spectrum. Moreover, we have discarded correction te
that will disappear as 1/ln(L), i.e., very slowly. This may
render this spectrum difficult to observe numerically.

This analysis shows that the relative ageu does not scale
with L in a unique fashion. When computing a moment
orderm, only one scaling set dominates. The precise value
this dominanta depends onm. It corresponds to the condi
tion d f(a)/da52m or

a~m!5
21

~m11!ln~2!
, ~10!

unless the corresponding value off is negative. The momen
then varies as

^um&}Lt(m), ~11!

where

t~m!5 f „a~m!…2d1ma~m!. ~12!

In our example,

t~m!52
ln~m11!

ln~2!
. ~13!

C. Average density

Now we can use the above results to get the final form
the time evolution of the average density.

FIG. 4. Multifractal spectrum of the~relative! age distribution in
the hierarchical lattice.a gives the scaling exponent of the age wi
the system size, andf the corresponding fractal dimension of th
support of the set of sites contributing to a givena.
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The recursion relation in Eq.~4! is composed of two
terms. Let us study the first term. As the integration ope
tion is additive we can consider separately all the com
nents of a lattice of generationN; from subsystems of gen
erationN21 right upto individual bonds.

First we consider the generation 1 lattice, the simple d
mond. The two-site model gives the exact time depende
of the inactive bonds in the asymptotic limit~see Appendix
B! which is 12B(2)(t)}1/At. In order to get the contribu-
tion of these bonds we have to complete the integral of
~4!, the expectation value ofT21/2, with the correct ‘‘age’’
distribution of these subsystems. Note that we calculate
age of a diamond~level 1 object! not a bond. Therefore in a
level N system we shall usepN21(T;t) for the age distribu-
tion:

12^%1&}t21/2E
0

1

u1/2pN21~T;t !d ln~u!

5t21/2E
0

1

u1/2
@2 ln~u!#N22

~N22!!
d ln~u!

5t21/2 2N21E
0

` xN22

~N22!!
exp~2x!dx

5t21/2L/2, ~14!

where^% i& is the contribution of sublattices of generationi
to the average density.

The above result has two important implications. First,
time dependence of the sublattice, 1/At, is preserved on the
global scale. Second, the statistical distribution of ages g
rise to a system size dependence, i.e., a power-law oL,
which in the above example displays a trivial exponent
More generally, this exponent ist(21/2), as derived above

The above expression accounts for about half of
bonds. The next term that enters in the coupling is the in
tive minimal paths in the level 2 subsystems@Fig. 1~c!#. The
length of these paths is 2254 bonds. The two-site mode
predicts an asymptotict21/4 time dependence for 1
2B(4)(t). Thus here we have to use the moment of ord
21/4 and the age at generationN22,

12^%2&}t21/4E
0

1

u1/4pN22~T;t !d ln~u!

5t21/4 ~4/3!N22E
0

` xN23

~N23!!
exp~2x!dx

5t21/4~3/4!2L ln(4/3)/ln(2). ~15!

We see in this example a nontrivial scaling with the syst
size and a slower time dependence.

We can carry out this same procedure for higher gene
tion of subsystems. The length of the path in a leveli sub-
lattice isn52i , thus their contribution is

12^% i&}t21/n~121/n! iL2 ln(121/n)/ ln(2). ~16!
8-6
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Thus we observe that the scaling of the mean density ca
cast into the form of a sum of power laws with a vanishi
exponent 1/L522N and thus a slower and slower decay
zero. Each of these terms has a prefactor that exhibits a
ferent scaling withL, and hence, the aging of different sy
tem sizes cannot be accounted for by a simple reduced
such ast/L. The latter only holds for the first subset~half of
the system size!, and not the successive hierarchy of minim
paths. This argument explains why the time evolution of
mean density seemed to follow a unique curve when plo
as a function oft/L for early times. However, as time in
creases, we note a breakdown of this simple scaling,
larger systems shows a slower and slower increase in
average density. It is interesting to note, however, that
~extremely! large times~i.e., vanishing exponent 1/n) the
moment will depend only on the combinationt/L1/ln(2). This
exponent that appears inL is thea value of the largest fracta
dimension,f 52, a5a0 in the multifractal spectrum.

The above analysis is, however, valid only for very la
times, after a long transient. The sum ofm identically dis-
tributed random variables~when each individual variable i
taken from the uniform distribution! can be approximated b
a power-law distribution, only at late times. Before that, it
well approximated by a Gaussian, by the central limit the
rem. It is only when we are pushed to the tails of the dis
bution that the power-law regime occurs. However, the
tremizing rule makes this inevitable, though after a lo
transient. For instance, for a generation 3 minimal path, c
sisting of eight bonds in series, this transient aging per
lasts for aboutt;8!'40 000 time steps.t thus has to be
much larger than this so that the lower limit of the integral
Eq. ~14! can be taken to 0. We see that our computat
becomes strictly applicable only for extremely late times.

Finally, we put together all the information we have o
the increase of the density of the inactive bonds of the h
archical lattice.

~1! The lattice is a collection of two site systems fro
level 1< i<N where the ‘‘aging’’ of a bond in any level is
given by Eq.~B7!.

~2! The number of bonds in each level gives a prefacto
2N2 i /(2N21).

~3! The age distribution at each level results in an ad
tional factor as in Eq.~16!.

We finally get the following result for the average densi

% (N)~ t !512(
i 51

N S 2N2 i

2N21
D a~ i !Lz( i )

~ t !b( i )
, ~17!

where~usingn52i andL52N for a lattice of levelN)

a~ i !5G~1/n!~n! !1/nn22~121/n! i ,

b~ i !51/n,
~18!

z~ i !52
ln~121/n!

ln~2!
.

Figure 5 visualizes this result compared with the numer
data.
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D. Intermediate time behavior of the average density

For a minimal path of length,52n, we are interested in
the maximum value of the sum of, random numbers over a
number of realizations equal to the aget. For large,, the
distribution of the average element in the sum conver
towards a Gaussian of average 1/2 and standard devia
1/A12,. The expectation value of the largest such elem
over a timet is thus such that

E
S

` 2A3,

A2p
exp@26,~x21/2!2#dx'

1

t
. ~19!

It is important to note that this expression is valid for large,
and moderatet, whereas we previously considered the lim
of large t and moderateL. The order of the limits plays a
crucial role. The mean value of the densities along the m
mal path thus departs only very slowly from 1/2. This slo
change of the density of the sites along the minimal path
turn plays a crucial role in the very slow decay of the me
density in spite of the vanishing fraction of bonds involve
The departure from 1/2 varies roughly asAln(t). Taking such
a form into account, we see that the average density does
converge to 1 any longer, just as if some bonds w
quenched close to their average value 1/2, up to a v
slowly evolving correction. Thus numerically, one ca
achieve a reasonable fit of the evolution of% to values dif-
ferent from 1. However, as the time window is enlarged,
effective asymptotic% increases. Reciprocally, extending th
system size, this asymptote decreases. Thus, in spite o
quality of the fits that can be produced this way, we underl
the fact that such an approach is only applicable to a fi
time or system size window.

E. Hamming distance

Let us now consider the overlap function shown in Fig.
For the hierarchical lattice, the overlap has a simple interp
tation. We have seen that, at least for large times, most of

FIG. 5. The test of the analytical result. The numerical data
plotted with symbols; the corresponding analytical with data so
lines. The hierarchical level isN51,2,3,4 from bottom to top,
respectively.
8-7
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TÖRÖK et al. PHYSICAL REVIEW E 67, 026108 ~2003!
activity essentially takes place along the same path. H
ever, from time to time, the minimal path jumps from o
conformation to another, whose distance to the previous
is quantified by the Hamming distance. The scarcity of
jumps allows us to neglect the occurrence of simultane
multiple jumps. Let us define the probabilityPL(d,t) as the
probability that a jump equal tod52n takes place, i.e., the
probability that the current path differs from the previous o
by d sites in a system of sizeL52N. This quantity, apart
from containing information about how the average value
d changes with time, is also the natural analog of an ‘‘a
lanche distribution’’ in this model. As will be seen furthe
down, this quantity does indeed decay for large times a
power law of the distanced like in many other self-organized
critical models. However, the distribution has a tim
dependent prefactor unlike other models with a true ste
state.

For n5N, we have to consider a jump at the largest sc
available in the system. At this level, the lattice can be coa
grained as a generation 1 lattice. The probability for suc
jump to occur is equal to the probability that in a two-s
model, the activity moves from one site to the other one.
ic
b
a

th
in
tl

a

-
lop
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show in Appendix A that this probability is equal to 1/(t
11), and thus for large times,

PL~d52N,t !'1/t. ~20!

Let us now consider a smaller jump size, i.e.,n5N21. This
means that one half of the actual minimal path should m
to a different configuration. Thus we focus on a subsystem
sizeL/2, whose age isT. In Appendix A, we show that the
probability for such an age isq(T,t)52(T11)/(t11)(t
12)'2T/t2 @see Eq.~A4!#. Moreover, we have two such
subsystems in series and thus the probability that the H
ming distance isL/2 in a system of sizeL is approximately
twice the probability that in one subsystem the Hamm
distance is equal to the system size,PL/2(L/2,t). Integrating
over all timesT with the above probability we have

PL~L/2,t !'2E
0

t2T

t2

1

T
dT54/t. ~21!

For smaller jumps, we can repeat the same argument re
sively, to obtain
PL~2n,t !'2N2nE
0

tE
0

T1
•••E

0

TN2n112T1

t2

2T2

T1
2 •••3•••

2TN2n

TN2n11
2

dT1•••dTN2n5
22(N2n)

t
5

L2

td2 . ~22!
the
s
an

totic
ing
ry
i-

re-
vity
ays
ice,
fect:
ef-
ich
in

the
p-
ffer-
lat-
is
and
the
ly

ize
As one can see, this result agrees well with the numer
results shown in Fig. 6. Moreover, this expression is to
compared with the Hamming distribution obtained with
logarithmic measure ford on the Euclidean lattice@5#, which
has the same functional form. Hence this distribution is
same for the two lattices despite their connectivities be
very different. Note also that this quantity scales perfec

FIG. 6. P(d,t)t scaled by the system size for the hierarchic
lattice of generationN56 at timest/L5100, 200, 300, and 1000
and for generationN57 for timest/L5100 and 500. Time is mea
sured in terms of the system size and the straight line has a s
22.
al
e

e
g
y

with the system size and is described at all times by
reduced time distributiont/L, as evidenced in Fig. 3. Thu
the behavior of the Hamming distance is much simpler th
the slow density increase in the system.

VI. DISCUSSION AND CONCLUSION

We have presented simulation results and an asymp
analysis of the behavior of the optimization and restructur
model on the hierarchical lattice. The two lattices are ve
different in structure, yet they also exhibit remarkably sim
lar features.

The hierarchical lattice is easier to analyze due to its
cursive structure. For example, the very specific connecti
of sites on this lattice ensures that large jumps are alw
possible, though rare at late times. In the Euclidean latt
these are strongly suppressed by a further feedback ef
the localization of the path limits the density increasing
fect of the dynamics to a small region around the path, wh
in turn intensifies the localization. This feature also results
the density map being very different in the two cases. In
Euclidean case@5# the inhomogeneities in a late-time sna
shot of the system are much more enhanced. Another di
ence is that changes in conformation in the hierarchical
tice are organized in a strictly hierarchical way. This
clearly not so on the square lattice, where randomness
self-organization play an important role. Nevertheless,
overall behavior of the two type of lattices is remarkab
similar.

These similarities are most apparent in the time and s

l

e

8-8
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SLOW RELAXATION DUE TO OPTIMIZATION AND . . . PHYSICAL REVIEW E67, 026108 ~2003!
dependence of the average density~Fig. 2!. In both cases we
have a data collapse for short times, while for longer tim
the dynamics becomes slower and slower as the size o
system increases. For the hierarchical lattice, we have
tained an analytic expression for the scaling of the Hamm
distance, for the local age distribution, and its multifrac
spectrum, and the asymptotic average density evolution w
time. In particular, the mechanism behind the breakdown
ergodicity, and the unusual size dependence of the den
evolution can be traced back to the multifractal distributi
of age. The latter provides a scenario for ‘‘glassy’’ aging.
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APPENDIX A: TIME PARTITIONING IN THE TWO-SITE
PROBLEM

We consider here the two-site model and prove that a
the elapse of a timet, the probability that a given site ha
been visitedT times is uniformly distributed between 0 andt.
The following proof is valid foranydistributionp(x). Let us
computeq(T,t), the probability thatthe active sitehas been
refreshedT times up to timet. Let the value of the recently
refreshed site be denoted byx and the inactive site att bebt .
At time t two things may happen:~i! eitherx,bt21 and thus
Tt5Tt2111 with probability (t11)/(t12) ~ii ! or x
.bt21, and thusTt5t2Tt21 with probability 1/(t12).
Note that for any distributionp(x) the activity change can
only be due to the fact that the largest generated rand
number up to timet is at instantt. This happens with prob
ability 1/(t12) because in an independent time series
random numbers the largest number is equally likely to
anywhere. At timet50 we have to initialize the system b
generating two random numbers for the two sites. This is
reason for the shift in time fromt to t12.

Now we can write a simple evolution equation forq(T,t),

q~T,t !5q~T21,t21!
t11

t12
1q~ t2T21,t21!

1

t12
.

~A1!

The general solution of the recursion can be written as

q~T,t !5A
~T11!

~ t11!~ t12!
1B. ~A2!

It is simple to computeq(t,t) from the above recurrence, an
get

q~ t,t !5
2

~ t12!
~A3!

and thusB50 andA52. Thus finally

q~T,t !5
2~T11!

~ t11!~ t12!
. ~A4!
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Now, the number of updates of the other site is simplyq(t
2T,t), thus we can formulate the probability distributio
that a site has been updatedT times:

r ~T,t !5
1

2
@q~T,t !1q~ t2T,t !#5

~T11!1~ t2T11!

~ t11!~ t12!

5
1

~ t11!
, ~A5!

which is independent ofT. Thusr (T,t) is uniform.

APPENDIX B: AVERAGE DENSITY OF THE INACTIVE
SITE IN THE TWO-SITE MODEL

Since the hierarchical lattice can be considered as a s
two-site systems, we need to consider the distribution of
maximum in a two-site model in the case when each of
sites is taken from a distributionpn(x). Here the subscriptn
denotes that this is the distribution for a sum ofn indepen-
dent random numbers each of which is taken from the u
form distribution. We need only consider the case whenn
52N as the length of the hierarchical lattice can only be
this form.

Unfortunately,pn(x) is difficult to formulate in a genera
way. For largen this is a Gaussian for moderate values ofx.
However, very close to the extremes 0 and 1, it is a pow
law as we will see below. It is this regime that is asympto
cally reached and hence relevant for our purposes. We he
only consider the regimesx,1/n or x.121/n ~cases when
only one number out ofn may reach its extreme value 1 i
the x,1/n case and 0 in thex.121/n case!.

Let us recall the formula for the average value of t
largest generated number up to timet when each of the in-
dividual numbersx is taken from a distributionpn(x):

B(n)~ t !5~ t11!E
0

1

xpn~x!Pn
t ~x!dx, ~B1!

where Pn(x) is the cumulative distribution ofpn(x). Thus
Pn

t (x) accounts for the probability that thet other numbers
are less thanx. Thet11 factor is needed to take into accou
the fact that the position of the largest number can be a
where in time. The indexn indicates that the distribution
describe the average ofn independent, uniformly distributed
random numbers.

For t@1 we havePn
t (x)!1 for most values ofx, except

for a 1/n neighborhood of 1.
So in the integration the most important contributio

comes from the part that is close to 1. This permits us
restrict the integral to the part that we can calculate with
loss of consistency,

B(n)~ t !.E
121/n

1

~ t11!xpn~x!Pn
t ~x!dx ~ t@1!. ~B2!

The probability distribution close to the limits takes the fo
lowing forms:
8-9
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pn~x!x,1/n5
nn

~n21!!
xn21, ~B3!

pn~x!ux.121/n5
nn

~n21!!
~12x!n21. ~B4!

The cumulative distribution is the integral of the above,

Pn~x!ux.121/n512
nn21

~n21!!
~12x!n. ~B5!

Let us now turn back to Eq.~B2!. Using anx512y variable
replacement and doing integration in parts we arrive at
following formula after neglecting the exponentially deca
ing parts:

B(n)~ t !5~ t11!
nn

~n21!!

3E
0

1/n

~12y!yn21S 12
nn21

~n21!!
ynD t

dy

512E
0

1/nS 12
nn21

~n21!!
ynD t11

dy. ~B6!

We rewrite the integrand in a (•••) t11[exp$(t
11)ln(•••)% form and make a Taylor expansion inyn around
rd

ed

.

.

.
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e

y50 to the second order. The result can be written in
following form that we use in our calculations:

B(n)~ t !512G~1/n!~n! !1/nn22S t1
3n11

2n D 21/n

1OS 1

t1/n11D ;
1

e
t21/n. ~B7!

In Fig. 7 we can see that the above approximation is ex
lent for smalln and larget.

FIG. 7. The test of the results in Eq.~B7! against numerical
simulations on the same model. The solid lines are the analy
solutions; the symbols indicate numerical simulation results. T
system sizes aren52(L), 4(1), 8(h), 16(3).
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